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SUMMARY 
A first biharmonic boundary value problem is obtained by combining the coupled steady-state 
Navier-Stokes equations in their stream-function-vorticity formulation. This biharmonic boundary value 
problem is solved by a fast biharmonic solver developed by the authors wherein the idea of preconditioned 
conjugate gradient method is used. The biharmonic driver (BID) method using this solver has been found 
fast converging, and produces accurate results up to moderately large Reynolds numbers. Also, the mesh 
size does not affect the convergence rate. 
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INTRODUCTION 

The Navier-Stokes equations for two-dimensional steady flow of an incompressible fluid may be 
written in the stream-function-vorticity formulation as 

and 

where I) is the stream function, -w the vorticity and R the Reynolds number. Equations (1) and (2) 
together with given boundary conditions constitute a non-linear elliptic boundary value problem 
and the degree of non-linearity increases with the Reynolds number. 

There are several approaches to deal with the equations (1) and (2). The first approach consists of 
solving the equations (1) and (2) in the coupled form. Each of the equations (1) and (2) is discretized 
by using a 5-point or 9-point formula to obtain a block tridiagonal form. This approach has been 
adopted by Burggraf,’ Roache’ and G ~ p t a . ~  The same approach with some modifications has 
been applied by S ~ a l d i n g , ~  Dennis and Walsh5 and Chein.6 The lagging boundary conditions 
create a problem in this approach. 

The second approach is to obtain a biharmonic boundary value problem in $ by combining 
equations (1) and (2) and transferring the non-linear term to the right hand side. The biharmonic 
equation is discretized using a 13-point or 25-point formula, and this in turn leads to a system of 
algebraic equations which are in block five-diagonal form. The earlier techniques to solve a 
block five-diagonal form were iterative techniques, developed by Conte and Dames,’ Fairweather 
et al.* and Hadjidimos.’ These methods did not prove satisfactory for the present problem since 
they take a large number of iterations to converge, and do  not yield a highly accurate solution. 
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Recently, some direct solvers have been devised by Bauer and Reiss," Buzbee and Dorr" and 
Gupta and Manohar." Roache and Ellis13 used these solvers'0*'' for the solution of the driven 
cavity flow problem. They reported results up to R = 50. The problem for higher Reynolds 
numbers in these methods arises due to the increase in the number of iterations, which ultimately 
leads to instability. The operation count for these methods varies between O(N512 log N )  and 
O(N4), where N 2  is the number of linear equations. The present authors have developed a 
biharmonic solver14 using the preconditioned conjugate gradient method,' which involves 0('13) 
operations. There are numerous references to the encouraging improvements in speed and 
efficiency with which the conjugate-gradient method can be applied to solve algebraic equations 
generated by finite-difference approximations. The recent work of Khosla and Rubin16 has 
brought this point out most clearly. They show that, for finite-differenced Laplace equations, the 
conjugate-gradient method converges to a solution an order of magnitude faster than the more 
commonly used point successive relaxation, successive line relaxation, alternating direction 
implicit, and strongly implicit procedures (see also, Reference 17). A similar improvement has been 
noted by Kershaw,18 who indicates that solutions are obtained 6000 times faster than by the point 
Gauss-Seidel methods, 200 times faster than by AD1 methods, and 30 times faster than by block 
successive relaxation for large problems. Results have been obtained up to R = 400. 

DERIVATION OF THE NUMERICAL SCHEME 
FOR THE DRIVEN-CAVITY PROBLEM 

We consider a two-dimensional square cavity, as shown in Figure 1, filled with Newtonian, viscous 
and incompressible fluid. The fluid is forced to move by the motion of the upper surface. When the 
steady state is reached, the motion is governed by the equations (1) and (2) with the following 
boundary conditions: 

j=n+' 

w =  0 
wx= 0 

j =O( 
i :  

Primary vortex a 
80) (1 ,o: 

$ 

I =  0 
I,= 0 

-X 
W = O  

Wv- 0 
Figure 1. Driven-cavity flow problem 

i = n  f l  
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I) = 0, along all boundaries, 

t,bx = 0, along the vertical walls OC and AB, 

1,9~ = 0, along the bottom wall OA, 

$ y  = - 1, along the sliding wall BC. 

(3) 

(4) 

( 5 )  

(6) 
Eliminating o between (1) and ( 2 )  and taking the non-linear term from the left-hand side to the 
right-hand side, the resulting equation is written as 

v4* = w*yv2*)x - (*xv2*)yl. (7) 
The term containing the biharmonic operator is solved to compute a new iterative value t+Vk) by 
lagging the non-linear term as follows: 

[V4*Yk) = “*yv2*)x - (*xv2~)y l (k-  I ) .  (8) 
We have applied a 13-point formula for the biharmonic operator and central difference formulae 
for the terms of the right-hand side of equation (8). The changes in the biharmonic operator near 
boundaries in the interior of the domain are built into the direct s01ver.I~ 

COMPUTATIONAL PROCEDURE 

Let there be n interior points along both the directions. The following procedure is adopted for the 
computation. 

1. 
2. 

6 .  

Assume the initial guess values of $ at the interior points as zeros. 
Compute the right-hand side of equation (8) by taking the following approximation: 

j =  1, ..., n, 
where 

(9) 

The points occurring outside the boundary are replaced by using the derivative boundary 
conditions (4)-(6). 
The right-hand side for the mesh line j = n is modified by adding the terms 2h for each 
i =  1, ..., n. 
Solve the resulting system of linear equations by applying our algorithmI4 to obtain new 
values t,h(‘). 
Test the convergence criterion 

maxi$@) - $!;-‘)I < E, (10) 
i j  

where E is accuracy of the iterative procedure. Here, the value of E is taken as 
If the criterion (10) is satisfied, the computations are stopped. Otherwise, repeat the 
procedure (2)-(5) till the accuracy is achieved. 
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7. Lastly, compute the vorticity o in the interior of the region by using the standard 5-point 
formula for the Laplacian operator in equation (1). 

8. The vorticity o on the boundary is computed by using formula (2-1) given in Reference 19. 

NUMERICAL RESULTS AND DISCUSSION 

We have obtained the numerical solution for the square driven cavity flow problem for Reynolds 
numbers in the range 1-400. The values of the stream function at the centre of the primary vortex 
(+,,,ax = maxi t,bij1), the value of the vorticity at the vortex centre wvc and the location of the primary 

vortex (x, y )  using a 21 x 21 mesh are reported in Table I along with comparable results from the 
literature. The streamlines and vorticity curves have been drawn in Figures 2-4 for R = 10,100 and 

ij 

Figure 2. Equivorticity curves and streamlines for R = 10 with a 21 x 21 mesh 

\o.o 0.0, 
0.0 0.0 

Figure 3. Equivorticity curves and streamlines for R = 100 with a 21 x 21 mesh 
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- 1  .o I 0.0 

Figure 4. Equivorticity curves and streamlines for R = 400 with a 21 x 21 mesh 

Table 11. Comparison of convergence-rate with that of Roache and Ellis13 
~ ~ 

Reynolds Number of iterations taken Number of iterations taken 
number by Roache and Ellis'3 by our solver ( h  = 1/20) 

10 6 2 
20 8 4 
50 14-18 9 

400, respectively. From these Figures it is clear that there is no secondary vortex at R = 10, but 
there exist two secondary vortices at the downstream corners for R = 100 and 400. Also, the size of 
the secondary vortices increases with the increase in Reynolds number, as observed experimentally 
by Pan and Acrivos20 The equivorticity curves become more asymmetrical, and the recirculating 
eddies become more dominant with the increase in Reynolds number. The equivorticity curve 
at R = 400 has a secondary eddy on the bottom wall at  the level - 1.0, as also observed by Marshall 
and Van Spiegel" and Ghia et ~ 1 . ~ ~  Computations have also been done for the Reynolds 
numbers using different mesh sizes and it has been observed that the mesh size does not affect 
the convergence rate. 

Computations have also been made by applying the convergence criterion used by Roache and 
Ellis,13 and number of iterations for the BID method using our solver14 is compared with that of 
Roache and EllisI3 in Table IT. It is noted from Table I1 that the convergence rate of the BID 
method using our ~ o l v e r ' ~  is uniformly better than that of Roache and Ellis.13 

CONCLUSIONS 

The BID method presented here, using the direct solver based on the preconditioned conjugate 
gradient method, is more stable and faster converging than that of Roache and Ellis.13 The results 
are obtained up to moderately large Reynolds numbers and these compare well with those of 
previous a ~ t h o r s . ~ * ~ ~ - ~ ~  Also the convergence rate is independent of mesh size. The experiments of 
Pan and Acrivos'O showed that the size of the downstream secondary vortex increases with R for 
R < 500. Our observations are in good agreement with this experimental behaviour. 
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